CLASS 12 BATCH

LECTURE - 01 CHEMICAL KINETICS

Today's Goal

Rate of Reaction Types of Rate Factors affecting rate

Chemical Kinetics

In this chapter the rate or velocity or speed of reaction is studied

Types of Reaction :

SLOW REACTION Rusting of iron in the presence of air and moisture.

MODERATE REACTION Inversion of cane sugar Hydrolysis of starch

FAST REACTION Ionic reactions – AgNO₃ + NaCl

Rate of Reaction

Unit of Rate of Reaction

1. In terms of concentration

2. In terms of Pressure

Types of rate of reaction

1. Average Rate

2. Instantaneous rate

1. Average Rate

MBC

1. Instantaneous Rate

22

Rate of disappearance or consumption

Rate of Appearance or formation

Factors affecting Rate of Reaction

- Concentration
- Pressure
- Catalyst
- Temperature
- Surface area

Graphical Analysis

For Reactant

Graphical Analysis

For Product

$$r_{\text{inst}} \text{ at } 600 \text{ s} = -\left(\frac{0.0165 - 0.037}{(800 - 400)\text{ s}}\right) \text{ mol } \text{L}^{-1} = 5.12 \text{ x}$$

$10^{-5} \text{ mol } \text{L}^{-1} \text{s}^{-1}$

$$r_{\text{inst}} \text{ at } 600 \text{ s} = -\left(\frac{0.0165 - 0.037}{(800 - 400)\text{ s}}\right) \text{ mol } \text{L}^{-1} = 5.12 \text{ x}$$

$10^{-5} \text{ mol } \text{L}^{-1} \text{s}^{-1}$

1. The differential rate law equation for the elementary reaction A + 2B \rightarrow 3C, is :

Q 2. The rate of reaction is expressed in different ways as follows: $+\frac{1}{2}\frac{d[C]}{dt} = -\frac{1}{3}\frac{d[D]}{dt} = +\frac{1}{4}\frac{d[A]}{dt} = -\frac{d[B]}{dt}$ The reaction is:

 $4A + B \rightarrow 2C + 3D$

 $B + 3D \rightarrow 4A + 2C$

 $B + D \rightarrow A + C$

3. In the following reaction, how is the rate of appearance of the underlined product related to the rate of disappearance of the underlined reactant $\underline{BrO_3^-} + 5 Br^- + 6H^+ \rightarrow \underline{3Br_2} + 3H_2O$

4. In the reaction A + 2B \rightarrow 6C + 2D, if the initial rate $-\frac{d[A]}{dt}$ at t=0 is 2.6 × 10⁻² M sec⁻¹, what will be the value of $-\frac{d[B]}{dt}$ at t =0?

B

 $8.5 \times 10^{-2} \text{ M sec}^{-1}$

 2.5×10^{-2} M sec⁻¹

 $5.2 \times 10^{-2} \text{ M sec}^{-1}$

$7.5 \times 10^{-2} \text{ M sec}^{-1}$

© 5. The rate of a chemical reaction depends upon: [Punjab PMT 1999; AFMC 2002]

Catalyst

Pressure

Concentration

All of these

6. A gaseous hypothetical chemical equation $2A \rightarrow 4B + C$ is carried out in a closed vessel. The concentration of B is found to increase by 5×10^{-3} mol L⁻¹ in 10 sec. The rate of appearance of B is: [AFMC 2001]

 5×10^{-5} mol L⁻¹ sec ⁻¹

 4×10^{-5} mol L⁻¹ sec ⁻¹

7. For the reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds. **NCERT**

 4×10^{-4} M min⁻¹, 9×10^{-6} M sec ⁻¹

 2×10^{-4} M min⁻¹, 6.67 $\times 10^{-6}$ M sec ⁻¹

 6×10^{-4} M min⁻¹, 4×10^{-6} M sec ⁻¹

8. In a reaction, $2A \rightarrow$ Products, the concentration of A decreases from 0.5 mol L⁻¹ to 0.4 mol L⁻¹ in 10 minutes. Calculate the rate during this interval? [NCERT]

B

 $8 \times 10^{-3} \text{ M min}^{-1}$

 2×10^{-3} M min⁻¹

 $6 \times 10^{-3} \text{ M min}^{-1}$

THANK YOU !!

Homework

NCERT LAST CHAPTER READING DPP Of this Lecture

